6,508 research outputs found

    A low-voltage low-power front-end for wearable EEG systems

    No full text
    A low-voltage and low-power front-end for miniaturized, wearable EEG systems is presented. The instrumentation amplifier, which removes the electrode drift and conditions the signal for a 10-bit A/D converter, combines a chopping strategy with quasi-FGMOS (QFG) transistors to minimize low frequency noise whilst enabling operation at 1 V supply. QFG devices are also key to the A/D converter operating at 1.2 V with 70dB of SNR and an oversampling ratio of 64. The whole system consumes less than 2uW at 1.2V.Published versio

    HIV Drug Resistance-Associated Mutations in Antiretroviral Naïve HIV-1-Infected Latin American Children

    Get PDF
    Our goal was to describe the presence of HIV drug resistance among HIV-1-infected, antiretroviral (ARV) naïve children and adolescents in Latin America and to examine resistance in these children in relation to drug exposure in the mother. Genotyping was performed on plasma samples obtained at baseline from HIV-1-infected participants in a prospective cohort study in Brazil, Argentina, and Mexico (NISDI Pediatric Study). Of 713 HIV-infected children enrolled, 69 were ARV naïve and eligible for the analysis. At enrollment, mean age was 7.3 years; 81.2% were infected with HIV perinatally. Drug resistance mutations (DRMs) were detected in 6 (8.7%; 95% confidence interval 3.1–18.2%) ARV-naïve subjects; none of the mothers of these 6 received ARVs during their pregnancies and none of the children received ARV prophylaxis. Reverse transcriptase mutations K70R and K70E were detected in 3 and 2 subjects, respectively; protease mutation I50 V was detected in 1 subject. Three of the 6 children with DRMs initiated ARV therapy during followup, with a good response in 2. The overall rate of primary drug resistance in this pediatric HIV-infected population was low, and no subjects had more than 1 DRM. Mutations associated with resistance to nucleoside reverse transcriptase inhibitors were the most prevalent

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4-82 mG through paramagnetic alignment, and 13920+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at K' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate \le0.17 M_{\odot} yr1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of \geq105^{5} yr with a rotational velocity of \leq1228 km s1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA
    corecore